
7.8 Parameter Error Estimates

The original paper by Avni et al. is a helpful reference here, as it gives the likelihood
function and indeed the solution to this problem! But it does leave out a few details.
The main point of this example is to illustrate how difficult analysis can become from the
likelihood point of view, even for a simple thing like a mean.
We will work with twice the negative log of the likelihood function, which we call S. In
the notation of Avni et al., we have

S = −2
M
∑

k=1

Nk log fk − 2
M
∑

k=1

Uk log
M
∑

k′=k

fk′ .

The double summation arises because of the upper limits and is responsible for all the
subsequent algebraic problems.
We have in addition a normalization constraint

M
∑

k=1

fk = 1

and we also want to fix the mean to some particular value m

M
∑

k=1

kfk = m.

We are just working with bin numbers rather than some physical scale.
Now maximum likelihood corresponds to a minimum value of S, but to meet the con-
straints we use the standard technique of multiplying the constraint equations by Lagrange
multipliers µ and λ. Using the prefix δ to denote a small variation in the following variable,
we get by the usual rules of differentiation:

µ
M
∑

k=1

δfk = 0, (1)

λ
M
∑

k=1

k δfk = 0 (2)

and

M
∑

k=1

Nk

δfk

fk

+
M
∑

k=1

Uk

∑M
k′=k δfk′

∑M
k′=k fk′

.

writing out the last term in this equation carefully, it is a double sum

M
∑

k=1

Uk

(δfk + δfk+1 + . . . + δfM)
∑M

k′=k fk′

1



and rearranging, we get something that begins to look like the answer we are looking for

M
∑

k=1

(

Nk

fk

+
M
∑

k′=1

Uk′

∑M
k′′=k′ fk′′

)

δfk = 0.

By the usual reasoning, since we have the extra freedom of the Lagrange multipliers, we
can choose all the δfk to be zero except one, giving (for each k)

Nk

fk

+
M
∑

k′=1

Uk′

∑M
k′′=k′ fk′′

− µ− kλ = 0 (3)

after subtracting the variation of the two constraint equations. This gives something that
is clearly related to the answer

fk =
Nk

µ + kλ−
∑M

k′=1

U
k′

∑

M

k′′
=k′

f
k′′

but now we have to find λ and µ.
Suppose for the moment that there is no constraint on the mean, so λ vanishes. We can
find µ from rearranging and applying the normalization constraint, Equation 1. The first
step is

M
∑

k=1

µfk − fk

M
∑

k′=1

Uk′

∑M
k′′=k′ fk′′

=
M
∑

k=1

Nk

and we note that
∑

k fk = 1 and
∑

k Nk = J̃ where J̃ is the number of detected objects.
Expanding out the remaining term carefully, it comes to just J− J̃ if J is the total number
of objects. It follows that µ = J and we have the Avni et al. result.
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Figure 1: χ2 plotted against mean value m.

Alas, if the constraint on the mean applies there doesn’t seem to be a way of simplifying
things. The Lagrange approach however does produce a convenient form, Equation 3.
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Combining this with the constraints, Equations 1 and 2, we can solve simultaneously
(albeit numerically) for the fk and the µ and λ. One way of doing this is just to minimize
the sum of squares:

M
∑

k=1

(

Nk

fk

+
M
∑

k′=1

Uk′

∑M
k′′=k′ fk′′

− µ− kλ

)2

+

(

1−
M
∑

k=1

fk

)2

+

(

m−

M
∑

k=1

kfk

)2

.

This is brutal, but it works easily for small numbers of bins M . The result can be plugged
back into S and we can find out how it varies as a function of the assumed mean m.
A Bayesian solution is easier – if we can use the asymptotic Gaussian form of the likelihood,
we get the posterior distribution for the fk and getting the distribution for the sum is
not too bad if the covariance matrix is nearly diagonal (as it often seems to be in these
sorts of problems). Working this through is an interesting extra exercise, although it does
require quite a lot of differentiation!
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